METHODS OF APPLIED MATHEMATICS 1
Study of the linear algebraic structure underlying discrete equilibrium problems. Boundary value problems for continous equilibria: Sturm-Liouville equations, Laplace's equation, Poisson's equation, and the equations for Stokes flow. Contour integration and conformal mapping. Applications of dynamics leading to initial value problems for ODEs and PDEs. Green's functions for ODEs and introduction to asymptotic methods for ODEs, e.g. WKB analysis. Separation of variables and eigenfunction expansions for linear PDEs. Examples from physics and engineering throughout. Knowledge of undergraduate linear algebra, analysis and complex analysis is strongly recommended.
3
Occasionally
Sorted by ratings from Rate My Professors
Similar Courses
Sorted by ratings from Rate My Professors
Visual representation of course prerequisites and related courses
Loading Graph...